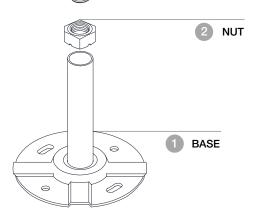
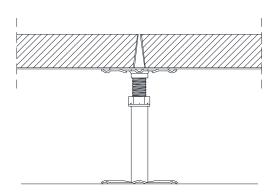

STRUCTURE DATA SHEET


SAS STRUCTURE


It is composed exclusively of pedestals which allow a height adjustment from 35 mm to 1030 mm. The pedestals are arranged in a 600×600 mm grid, and include:

BASE

The element that rests on the slab, composed of a metal plate 90 mm in diameter and 1.8 mm thick, sheared to obtain the necessary rigidity and to guarantee excellent grip to any glue. A 2 mm M16 tie rod 30 to 200 mm long, is applied by arc weld.

The weld is performed to ensure the two elements are perfectly joined. A nut with anti-backoff notches allows the pedestal to be adjusted.

SAS GRID STRUCTURE

3 HEAD

Supporting element composed of a metal plate 75×75 mm, 2.5 mm thick, shaped by shear die to achieve besides the necessary stiffening effect and supports also a deep drawing so that a complete object can be produced in a single piece, suitable for adjustment.

This state-of-the-art solution makes welds and forced couplings unnecessary. An object manufactured this way also guarantees natural rigidity and perfect coupling with the other element of the pedestal. A gasket of antistatic polythene or conductive, completes the head and snaps on to become solid with it.

Nominal measurements that are subject to minimal variations caused by mechanical deformation during machining.

